ITME VE MOMENTUM

 

Newton, hareken kanunlarını açıklarken, “kuvvet-ivme” ilişkisi yerine “kuvvetin itmesi” ve “hareketlilik miktarı” yani momentum arasındaki ilişkiyi kullanmıştır. Aslında bu iki yöntem arasında matematiksen olarak bir faklılık söz konusu değildir. Fakat farklı bir bakış açısıyla yapılan kullanışlı tanımlar yardımıyla kazanılan bilgiler çoğu zaman gizli kalmış bazı noktaları aydınlatır. İki topun veya iki atom altı parçacığın çarpışması ve bir meteorun yeryüzüne çarpması sırasındaki etkileşim kuvvetlerine ait çok az bilgimiz vardır. Buna rağmen ihtiyacımız olan fiziksel büyüklüklerin değerlerini tahmin etmemiz momentum ve enerji yöntemlerini kullanarak mümkün olmaktadır. Bu nedenle belkide en önemli yasaların ikisi enerjinin momentumun korunumu yasalarıdır.

DedeKorkutun anlattığı Boğaç Han hikayesini okumuşsunuzdur. Bu hikayede bir boğa ile güreşerek gerçekleştirdiği zorlu mücadele sonucunda kahraman bir gence isim verilmesi anlatılır. Boğaç Han olağan üstü  hızla gelen bir boğayı durdurmak için büyük bir çaba gösterir.

 

                 ITME(IMPULS) NEDİR?

Şekilde görülen kamyon bir saman yığınına girdiğinde küçük bir kuvvetle fakat, uzun sürede durabilmektedir. Şekil 2 de ise aynı kamyon bir duvara çarptığında büyün bir kuvvetle fakat kısa bir sürede durmaktadır. Bu gözlemlerimizden cisimlerin hareketliliğini artırmak veya azaltmak için gerekli olan kuvvetin;

· cismin kütlesi ve hız değişimi ile  doğru

·        Uygulama süresi ile ters orantılı olduğu anlaşılır

Kısaca bir cisme etkiyen kuvvet ile kuvvetin etki süresinin çarpımından oluşan vektörel değere itme(impuls) denir.
 “I”
ile gösterilir.

                s

                                       

                                       Ns         N

 

MOMENTUM NEDİR?

M kütleli bir cisim V hızına sahip ise bu cismin mV büyüklüğünde bir momentumu vardır. Momentum vektörel bir büyüklüktür ve “P” harfi ile gösterilir. Bir cismin momentumu anlık hızıyla aynı yöndedir. Çünkü momentumu oluşturan kütle skaler bir niceliktir.

 

   m/s

 

                                                            kgm/s       kg

 

ITME-MOMENTUM DEĞİŞİMİ

İki cisim arasında bir etkileşme kuvveti bulunduğu halde bunlardan birisinin diğerine etkittiği kuvvet sebebiyle her birisinin momentumunda değişiklik olur. (Kuvvet çekim, elektrik, magnetik veya başka bir menşeli olabilir.) Bundan başka Newtonun üçüncü kanununa göre cisimlerden birisine etkiyen kuvvet daima etkiyen kuvvete zıt yönde eşit olcağı için bu kuvvetlerin impulslarıda zıt yönde ve değerce birbirlerine eşit olurlar.

Kütlesi m olan bir cisme  süresince etkiyen kuvvetlerin bileşkesi sabit olsun. Dinamiğin temel ilkesine göre cismin kazanacağı ivme :

                         olacaktır.          İvme için: bağıntısı ile

                                          

Buna göre yukarda belirtilen  büyüklüğünde, cismin momentum değişimi olduğu anlaşılır. Bir cismin momentum değişimi ile gösterilir. Her zaman o cisme uygulanan itme miktarı o cismin momentum değişimine eşit olmaktadır.

  bu ifadeye itme-momentum teoremi denir.

 

GRAFİKLERİN İNCELENMESİ

Kuvvet-zaman ve Momentum-zaman grafikleri İş hesaplamalarında olduğu gibi itmeyi de pratikte sıkça rastlanan değişken kuvvetler durumunda hesaplamak istersen grafik metodu kullanırız. Biz cisme ait kuvvet-zaman grafiğinde, eğrinin altında kalan itmeyi dolayısıyla momentum değişimini verir.Yani kuvvet-zaman

(F-t) grafiklerinde

                                 olur.

 

 

 

 

 

 

F-t grafiğinde zaman ekseni üzerindeki alan pozitif (+) yönde itme veya momentum değişimini zaman ekseninin altındaki alan ise negatif (-) yöndeki itmeyi veya momentum değişimini verir.

                                                                  

åAlan = åI = å =

 

Şekil “b” de görüldüğü gibi momentum-zaman grafikleri altındaki alan ise herhangi bir fiziksel anlam taşımamaktadır. Dikkat edilirse grafikteki eğim   dir. Buda  momentum zaman grafiğinde, grafiğin eğimi, o cisme hareket doğrultusunda etki eden kuvveti vermektedir. Yani momentum-zaman grafiklerinde

                                               eğim

                  MOMENTUMUN KORUNUMU

Gözlemlerimiz sonucu bir cismin hareketliliğinin hız ve kütlesi ile orantılı olduğunu çıkarmıştık. Hareketlilik değişiminde büyük bir kuvvetle az bir zaman içersinde veya küçük bir kuvvetle uzun bir zamanda gerçekleşebileceğinden söz etmiştik. Bu gözlemler sonucunda  şeklinde söz etmiştik.

        İtme momentum teoreminde

                       

  Dış kuvvetlerin sıfır olması durumunda ( ) bu bağıntı

                          

                           

Buda demektir ki, bir cisme dıştan herhangi bir kuvvet etkimediği sürece cismin momentumu değişmemektedir. Yani ilk momentum son momentuma eşittir.

      Bu kurala momentumun korunumu  kanunu denir.

                        å å

 

 

 

 

 

ÇARPIŞMALAR

“Çarpışma” kavramını ilk düşündüğümüzde genellikle cisimlerin hızla gelip birbiriyle temas etmesi olarak algılarız. Örneğin bir beyzbol sopası topa vurulduğunda çarpışmanın başlangıcı ile bitişi hassas bir şekilde saptanır. Sopanın topa değme süresi topun hareket süresine göre çok kısadır. Top ve sopa çarpışma anında şekil değiştirirler. Çarpışma anında sopa topa büyük bir kuvvet uygular. Bu kuvvet zaman içinde karmaşık biçime değişim gösterir ve ölçümü oldukça zordur.

 

          Momentumun ve kinetik enerjinin korunduğu çarpışmalara esnek çarpışma denir.

          Başlangıç kinetik enerjisinin harcanabileceği muhtemel enerji biçimlerini içeren çarpışmalara esnek olmayan çarpışmalar denir.

 

Bu bölümde çarpışmaları incelerken bir doğrultu üzerinde gerçekleşen çarpışmalara merkezi çarpışmalar iki boyutta gerçekleşen çarpışmalara da merkezi olmayan çarpışmalar ismini vereceğiz.

 

       Merkezi çarpışmalar

Cisimler, kütle merkezlerini birleştiren doğru üzerinde çarpışırlarsa bu çarpışmalara merkezi çarpışmalar denir.

          

     a) Merkezi(bir boyutta) Esnek Çarpışma

 

Esnek çarpışmada momentum ve enerjinin korunduğunu belirtmiştik. Şekildeki gibi bir birlerine doğru ve hızlarıyla gelen

ve kütleli cisimler. Esnek çarpıştıktan sonra ve hızlarıyla birbirlerinden ayrılmış olsunlar. Çarpışmadan önceki momentumları ve  sonraki momentumları ve olsun. Buna göre:


  
å  =å

 

Cisimlerin çarpışmadan önceki kinetik enerjileri  çarpışmadan sonraki enerjileri olsun buna göre

å å

Enerjinin korunumundun elde edilen denklemde 2. dereceden büyüklükler olduğu için problem çözümlerinde biraz uzun ve zor işlemlerle karşılaşırız. Bu yüzden enerjinin  korunumu denklemi yerine daha sade olan bir denklemi kullanmayı tercih edeceğiz. Bu denklemde hızların korunumu denklemi denir.

 

       b) Merkezi (tek boyutta) Esnek Olmayan Çarpışma

Şekilde görülen  kütleleri birbirine doğru  ve hızlarıyla yaklaşmakta ve merkezi olarak çarpışmaktadır. Çarpışma sonrasında birlikte hareket eden cisimler “kalıcı” bir şekil değişikliğine uğramışlardır. Çarpışma sonucunda momentum korunmasına rağmen kinetik enerji korunmamıştır. Bu tür çarpışma yapan cisimler birbirleriyle temasta kalarak ortak hızla hareket ederler. Bu ortak hız momentumun korunumun dan bulunabilir.

     Momentumun korunumu yazılırsa


å å

   

burada ortak momentum ortak hız.

 

Merkezi olmayan çarpışmalar

Cisimler kütle merkezlerini birleştiren doğru üzerinde çarpışmazlarsa bu çarpışma merkezi olmayan çarpışmadır.

 

 

 

a) Merkezi olmayan esnek çarpışmalar

Böyle çarpışmalarda iki eksende momentumun korunumunu ayrı ayrı uygulayabiliriz.

 


 ve 

Genellikle problem çözümlerinde momentumun x veya y ekseninde korunmasını kullanarak sonuca daha kısa yoldan ulaşmak mümkün olacaktır.

  veya

  ve 

 

b)Merkezi olmayan esnek olmayan çarpışmalar



İki cisim farklı doğrultudan gelerek O noktasında birbirine kenetlenip hareketine devam ediyor olsun. Bu çarpışma ne merkezi nede esnektir. Çarpışmadan sonra kenetlenen cisimlerin ortak momentumuna dersek.

å

veya  å  ve  å

Fakat bu tür olaylarda bir miktar enerji ısıya dönüştüğünden kinetik enerji korunmaz.

 

Günlük hayatta kullanım alanları Mermi hareketinin incelenmesi

 

Silahta geri tepme olayını biliriz. Mermi atan bir tüfeğin merminin hareket yönünün tersine hareket etmesi, havası boşaltırken ilerleyen balonun hareketine benzer.

ROKETLER

 

Roket uzay boşluğunda ilerleyen kütlesinin bir kısmı oluşturan yakıtı yakarak büyük bir hızla gaz halinde geri fırlatır. Bu olayda etkin olan kuvvetlerin hepsi sistem içi kuvvetlerdir. Bu olayda etkin olan kuvvetlerin hepsi sistem içi kuvvetlerdir. Bundan dolayı momentum korunur fakat enerji korunmaz.

           

M=Roketin gaz attıktan sonraki kütlesi

Dm=Dışarı atılan gazın kütlesi

                               Dv=Roketin vektörel hızındaki değişim.

Benzer Yazılar:

  1. Düzlemsel kayma fizik ödevi ders notları
  2. Enerji çeşitleri fizik ödevi ders notları
  3. Merkezcil kuvvet fizik ödevi ders notları
  4. Mekanik enerji fizik ödevi ders notları
  5. Sir isaac newton fizik ödevi ders notları
  6. Piller ve akümülatörler fizik ödevi ders notları

Etiketler: , , , , , , , , , , , , , , , , , , ,